Visual Enhancements of Enterprise Models

Hans-Georg Fill
Peter Höfferer

Agenda

1 Motivation - Positioning
2 Visual Enhancements of Enterprise Models
 2.1 Basic Concepts of Enterprise Models
 2.2 Foundations of Visualisation
 2.3 Two examples of Visual Model Enhancements
3 Discussion
Motivation

Knowledge Management

<table>
<thead>
<tr>
<th>Technical</th>
<th>Organisational</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Data Mining</td>
<td></td>
</tr>
<tr>
<td>- Information Retrieval</td>
<td></td>
</tr>
<tr>
<td>- Enterprise Modelling</td>
<td></td>
</tr>
</tbody>
</table>

Focus

Information Overflow

Visualisation – Enterprise Modelling

Enterprise Modelling

Information Visualisation

Knowledge Visualisation

IT-Outsourcing

Flexibilität

Besseres Service (Service Desk, 3rd Level Support)

Start
Examples of Enterprise Models

Basic Concepts of Enterprise Models

We see enterprise models as:

An IT-based management approach to represent organisational knowledge in the form of (graphical) models that are based either on a user-defined or standardised schema.

Requirements for enterprise modelling techniques:

- Definition of a **modelling language** (including syntax, semantics, notation)
- Definition of a **procedure model** for applying the modelling language
Specification of Modelling Languages

Two state-of-the-art approaches:
• Ontologies
• Meta-models

Common properties:
• Specification of basic entities and their attributes of an application domain.
• Specification of the relations between these entities.
• Availability of internationally aligned standards for both approaches (e.g. OWL/RDFS, MOF)

Possible distinguishing feature:
• Degree of abstraction from the real world

Meta-Model vs. Ontology

Abstraction

low

high

Ontology

Meta-Model
Foundations of Visualisation of Enterprise Models

By reverting to the field of visual language theory and benefiting from the similarities to meta-model/ontology concepts:

- State S of an application domain AD for a visual language, described by objects O, attributes A and relationships R^n:
 \[S = \{O, A, R^n\} \]
- Visual language VL composed of a set of visual sentences VS. Vocabulary V of VS composed of a set P of visual primitives with visual dimensions D, and a set of visual relations V^n:
 \[V = \{P, D, V^n\} \]
- Possible visual dimensions according to (Bertin, 1982): Position (X,Y for 2D), Size, Brightness, Texture, Colour, Orientation, Shape
- Specification of the semantics of VL by mapping e.g.:
 \[O \leftrightarrow P, A \leftrightarrow D \text{ and } R^n \leftrightarrow V^n \]

Application to Business Process Modelling I

- Application domain Business Process Modelling BP is described by one start object S, at least one or more activities AC, zero or more decisions DEC, zero or more start points of parallel flows $SPAR$, zero or more unions of parallel flows $EPAR$, exactly one end object E and successor relations SR^n between the objects:
 \[BP = \{S^1, AC^*, DEC^*, SPAR^*, EPAR^*, E^1, SR^n\} \]
 All objects have a name as an attribute, activities have a range of attributes such as costs, duration, actors, input and output documents etc.
Application to Business Process Modelling II

• A graph-based Visual Language for Business Processes consisting of six primitives $SYM_{1,6}$, one relation ARR and an actual set SET of the visual dimensions* size ψ, brightness λ, texture τ, colour χ, orientation ω, and shape σ for the primitives and the relation

$$VL^{ADONIS} = \{SYM_1, SYM_2, \ldots, SYM_6, SET, ARR\}$$

$$SET (P \cdot V) = \{\psi, \lambda, \tau, \chi, \omega, \sigma\}$$

*Position dimension left out as determined by graph layout

Application to Business Process Modelling III

• Semantic Mapping between BP and VL^{ADONIS} then takes place as follows:

$$S \leftrightarrow SYM_1, AC \leftrightarrow SYM_2, DEC \leftrightarrow SYM_3, SPAR \leftrightarrow SYM_4, EPAR \leftrightarrow SYM_5, E \leftrightarrow SYM_6, SRn \leftrightarrow ARR$$

• Except for the name the attributes of the AC elements are not mapped to the visual attributes
Example of a Business Process in \(VL^{ADONIS} \)

Application to Business Process Modelling IV

- Central question: Can the remaining attributes be used for additional visualisation purposes?
- Path of analysis:
 - Which attributes are concerned in \(BP \) and \(VL^{ADONIS} \)?
 - Does a change in a \(SET \) result in a change of the semantics?
 \[
 SET_a(SYM6) \neq SET_b(SYM6) \\
 \rightarrow SYM6_a \neq SYM6_b \\
 \rightarrow \{E \leftrightarrow SYM6_a\} \neq \{E \leftrightarrow SYM6_b\}
 \]

- **Hypothesis 1:** Not all types of changes in a \(SET \) directly lead to a change in the semantic mapping.
- **Hypothesis 2:** Semantic mapping is influenced by context.
- **Hypothesis 3:** There is one dominant dimension in the visual language so that other dimensions can be used to code additional information.
Analysis of V^{ADONIS}

- Influence of visual dimensions on distinctiveness:

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Relevant for Distinction in ADONIS</th>
<th>Number of Elements affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>☑️</td>
<td>0</td>
</tr>
<tr>
<td>Brightness</td>
<td>☑️</td>
<td>0</td>
</tr>
<tr>
<td>Texture</td>
<td>☑️</td>
<td>0</td>
</tr>
<tr>
<td>Colour</td>
<td>☑️</td>
<td>0</td>
</tr>
<tr>
<td>Orientation</td>
<td>☑️</td>
<td>3</td>
</tr>
<tr>
<td>Shape</td>
<td>☑️</td>
<td>3</td>
</tr>
</tbody>
</table>

Examples of Visual Model Enhancements I

Colour-coded business process model:

- Start
- Activity A
- Decision
- Activity B
- Activity C

Cost estimator:低成本 10.000000
Examples of Visual Model Enhancements I

Size-coded business process model:

Thank you for your attention!

Questions, Discussion
Selected References for the Presentation

• SequoiaView http://www.win.tue.nl/sequoiaview/